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はじめに

応用:
• 化学物質のデータベースからのデータ収集
• XMLなどの形式で表現された文書の分析
• RNA配列からのパターン抽出

頻出部分グラフ: グラフの集合に，ある回数以上部分グラフとして含まれるようなグラフ

G 2-頻出部分グラフ

θ = 2

頻出部分グラフ列挙問題:
グラフの集合が与えられるとき，その頻出部分グラフを列挙する問題
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定義: 出力多項式時間アルゴリズム

列挙アルゴリズムの計算量評価指標 (1/2)

列挙アルゴリズム Aが解をすべて出力するまでにかかる時間が，入力サイズと出力サイズ
の多項式で抑えられるとき，Aを出力多項式時間アルゴリズムという．

（入力: I，出力: O）

↓出力多項式時間アルゴリズムのイメージ

Start Finishpoly(|I|+ |O|)時間

解の出力

列挙アルゴリズムでは一般に，出力サイズが入力サイズの多項式で抑えられない．
→ここでは，出力サイズに依存した計算量評価指標を用いる．
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定義: 多項式遅延アルゴリズム
列挙アルゴリズム Aの遅延とは，Aが
1. 最初の解を出力するまでの時間，
2. i番目の解を出力してから i+ 1番目の解を出力するまでの時間，
3. 最後の解を出力してからアルゴリズムが停止するまでの時間，
の最大値である．また，Aの遅延が入力サイズの多項式で抑えられるとき，
Aを多項式遅延アルゴリズムという．

定義より，「多項式遅延アルゴリズム⇒出力多項式時間アルゴリズム」が言える．

列挙アルゴリズムの計算量評価指標 (2/2)

↓多項式遅延アルゴリズムのイメージ

Start Finishすべて poly(|I|)時間

解の出力
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頻出部分グラフ列挙問題 (1/3)

定義: 頻度

定義: 頻出部分グラフ・共通グラフ

グラフの集合 GとグラフH について，グラフG ∈ Gで，
H を部分グラフとして含むグラフの個数を GにおけるH の頻度という．

グラフの集合 GとグラフH について，Gにおける頻度が θ以上であるようなグラフを
Gの θ-頻出部分グラフという．
特に，θ = |G|である場合，共通グラフという．

以後，グラフは連結であることを仮定する．
（非連結なグラフの部分グラフ同型性判定はパスフォレストでも NP困難）

G H

集合 Gにおける
グラフH の頻度は 2
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頻出部分グラフ列挙問題 (2/3)

定義: 頻出部分グラフ列挙問題

入力：グラフの集合 G，しきい値 θ > 0．

頻出部分グラフ列挙問題は次のように定義される．

G 2-頻出部分グラフ

Horváthらにより，木幅有界なグラフの集合に対する頻出部分グラフ列挙問題は
出力多項式時間で解けることが示されている [1]．

[1] Horváth, T., Otaki, K., Ramon, J. Efficient Frequent Connected Induced Subgraph Mining in Graphs of
Bounded Tree-Width. ECML PKDD, 2013. https://doi.org/10.1007/978-3-642-40988-2_40

θ = 2

出力：Gの θ-頻出部分グラフすべてからなる集合．
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頻出部分グラフ列挙問題 (3/3)

G 2-頻出部分グラフ

θ = 2

頻出部分グラフ列挙問題の課題

部分グラフとして包含

• 頻出部分グラフの数は非常に多くなることがある
• 他の頻出部分グラフに包含されているグラフが出力される場合がある

ここでは，極大性，飽和性といった性質を用いる
→頻出部分グラフのうち，よい性質を満たすものだけ出力したい
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極大 /飽和頻出部分グラフ列挙問題 (1/4)

定義: 極大頻出部分グラフ

グラフの集合 Gと整数 θ > 0，Gの θ-頻出部分グラフH について，
GのH と異なる任意の θ-頻出部分グラフH ′が，H を部分グラフとして真に含まない
とき，H を Gの θ-極大頻出部分グラフという．

G 2-頻出部分グラフ

2-極大頻出部分グラフ
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極大 /飽和頻出部分グラフ列挙問題 (2/4)

定義: 飽和部分グラフ・飽和頻出部分グラフ

グラフの集合 GとグラフH について，H を部分グラフとして真に包含し，かつ
H と頻度が等しいグラフが存在しないときH は Gの飽和部分グラフであるという．
さらに，頻度 θ以上の飽和部分グラフを θ-飽和頻出部分グラフという．

G 2-頻出部分グラフ

2-飽和頻出部分グラフ

右のグラフに包含されるが，
頻度が異なるため
どちらも飽和性を満たす．
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極大 /飽和頻出部分グラフ列挙問題 (3/4)

定義: 極大頻出部分グラフ列挙問題・飽和頻出部分グラフ列挙問題

入力: グラフの集合 G，しきい値 θ > 0

出力: Gのすべてのθ-極大 /飽和頻出部分グラフからなる集合

この困難性の証明は高さ60程度の木を用いて行われているため，
さらに高さが小さい場合の困難性は明らかになっていない．

Kimelfeldらにより，極大 /飽和頻出部分グラフ列挙問題は入力を木に限定しても
P = NPでない限り，出力多項式時間で解けないことが示されている [2]．

→本研究では，入力を木に限定し，その高さを制限したときの
極大 /飽和頻出部分グラフ列挙問題について考えた．

[2] Kimelfeld and Kolaitis. (2013). The complexity of mining maximal frequent subgraphs. PODS 13.
https://doi.org/10.1145/2463664.2465222
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頻出 極大頻出 飽和頻出
h = 1

h = 2

h = 3

h ≥ 60

...

多項式時間
出力多項式時間 [1]

出力多項式時間 [1]

出力多項式時間 [1]

？ ？

多項式時間 多項式時間
多項式遅延多項式時間 (θ = |G|)

NP-hard [2] NP-hard [2]

極大 /飽和頻出部分グラフ列挙問題 (4/4)

高さ hの木の集合に対する頻出部分木マイニングについては，
以下のような結果が知られている．（赤字部分が本研究の結果）

[2] Kimelfeld and Kolaitis. (2013). The complexity of mining maximal frequent subgraphs. PODS 13.
https://doi.org/10.1145/2463664.2465222

[1] Horváth, T., Otaki, K., Ramon, J. Efficient Frequent Connected Induced Subgraph Mining in Graphs of
Bounded Tree-Width. ECML PKDD, 2013. https://doi.org/10.1007/978-3-642-40988-2_40

ここで，NP-hardとは，P 6= NPの仮定のもとで
出力多項式時間アルゴリズムが存在しないことをいう．
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結果

本研究では，以下の定理を示した．

定理1

高さ2以下の根付き木の集合 T に対して T の部分グラフ同型性についての極大性に関して
極大な共通木は一意に定まり，多項式時間で求められる．

定理2

高さ2以下の根付き木の集合に対し，飽和頻出部分木は多項式遅延で列挙できる．

本発表では，定理1, 2について述べる．
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高さ2の根付き木の極大共通木

T1

T2

深さ1の頂点の次数でソート

高さ2の根付き木 T1, T2を考える．T1, T2の深さ1の頂点を次数が大きい順にとり，
その部分木について極大な共通木をとる．→極大共通木となり，ただ一つに定まる．

木が 2つの場合

木が n個の場合
木が n個の場合でも，極大な共通木はただ一つに定まり，多項式時間で求まる．
T = {T1, . . . , Tn}の極大な共通木をMCT(T )と表す．
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飽和頻出部分木の列挙 (1/8)

先の結果（定理1）を用いて，下記の定理2を示す．

定理2

高さ2以下の根付き木の集合に対し，飽和頻出部分木は多項式遅延で列挙できる．
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まず，木X のサポートを次のように定義する．

定義: サポート

木の集合 T と木 X に対して，T 中の木うち X を部分グラフとして含むグラフの集合を T
におけるX のサポートといい，T (X)と表す．

飽和頻出部分木の列挙 (2/8)

補題

X が飽和部分木である⇔ MCT(T (X)) = X．

このとき，飽和頻出部分木の定義から以下の補題が成り立つ．

また，定理1よりT の部分集合Sを固定したとき，Sの極大な共通木はただ一つに定まる．

よって，MCT(T (X)) = X を満たす木X を列挙できればよい．

逆探索と呼ばれる手法を用いてこのような木を列挙する．
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飽和頻出部分木の列挙 (3/8)
逆探索

列挙木（下記参照）を深さ優先探索して解を列挙する手法

定義: 列挙木

• 根と呼ばれる特別な解Rを定義する．

根

子 親

解

• 根を除く全ての解 Sに対して，ちょうど1つ，
親となる解 p(S)を定義する．

列挙問題の解の集合 Sに，

ここで，根を除く全ての解から，その親に辺を張った
根付き木を列挙木という．

逆探索のうれしさ

• 根の計算，親の計算，i番目の子の計算がそれぞれ入力サイズの多項式時間でできると，
解の列挙にかかる時間を抑えられる．
• 出力済みの解を記憶しておく必要がないため，空間計算量が小さい．
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S

R

列挙木の構築

飽和頻出部分木の列挙 (4/8)

列挙木は明に構築する必要はなく，
解の集合を Sとして，以下を定義すればよい:

• 根R ∈ S
• 親を求める関数 p

• 子を求める関数 Adj

ただし，以下の条件を満たす必要がある:
1. 親を有限回たどることで，根に到達できる．
2. 親の子に自身が含まれる．

p

Adj
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{1} {2} {3} {4}

{1, 2} {1, 4} {2, 4}

{1, 2, 3} {1, 2, 4}

{1, 2, 3, 4}

飽和頻出部分木の列挙 (5/8)
列挙木の定義

根の計算:
MCT(T )を根とする．

親の計算:
T (X)に属していない T の要素で，
MCT(T (X) ∪ {X ′})が極小となる
木X ′に対して，

p(X) := MCT(T (X) ∪ {X ′}).

子の計算:
木X に次数1の頂点を1つ加えた木
X ′に対して，MCT(T (X ′))．

上の集合はその木のサポートを表す→
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飽和頻出部分木の列挙 (6/8)
列挙木が満たすべき条件の確認

1. 親を有限回たどることで根に到達できる
任意の飽和部分木X とその親 p(X)に対して，|T (X)| < |T (p(X))|．
→1回親をたどることでそのサポートは少なくとも1以上増える．
→高々 |T |回親をたどれば根に到達．

任意の木XcとXcの親X について考える．
X に1頂点追加して得られる木でXcに包含される木
が存在する．（右図Xu）
ここで，MCT(T (Xu)) 6= Xcと仮定すると，
親の極小性に矛盾．

2. 親の子に自身が含まれている

Xv Xw

X

Xc

Xu

1頂点を追加

�

�
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飽和頻出部分木の列挙 (7/8)

計算量の解析

逆探索にかかる時間計算量は，O(t(R) + (t(Adj) + t(p)) ·∆F · hF )遅延．
• 任意の解から根までは，高々 |T |回親を辿れば到達可能→ hF ≤ |T |
• 子の数も高々 |T |→∆F ≤ |T |

列挙アルゴリズムの遅延は，
入力サイズの多項式で抑えられる．
よって，
飽和部分技を多項式遅延で列挙できた．

変数 値
t(R)

t(Adj)
t(p)

∆F

hF

i番目の子の計算にかかる時間
根の計算にかかる時間

親の計算にかかる時間
列挙木 F の次数の最大値
列挙木 F の高さ
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{2} {3} {4}

{1, 2} {1, 4} {2, 4}

{1, 2, 3} {1, 2, 4}

{1, 2, 3, 4}

頻度 θ以上の解の列挙

この列挙木は，根のサポート |T |
を最大値として，葉に近づくほど
単調にサポートが減少していく．

飽和頻出部分木の列挙 (8/8)

θ-飽和頻出部分木を列挙したい場合，
サポート θの解から先の探索を
打ち切れば良い．

θ ≥ 4

θ ≥ 3

θ ≥ 2

θ ≥ 1
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{2} {3} {4}

{1, 2} {1, 4} {2, 4}

{1, 2, 3} {1, 2, 4}

{1, 2, 3, 4}

頻度 θ以上の解の列挙

この列挙木は，根のサポート |T |
を最大値として，葉に近づくほど
単調にサポートが減少していく．

飽和頻出部分木の列挙 (8/8)

θ-飽和頻出部分木を列挙したい場合，
サポート θの解から先の探索を
打ち切れば良い．

θ ≥ 4

θ ≥ 3

θ ≥ 2

θ ≥ 1

θ= 2の場合
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まとめと今後の展望

本研究の結果
• 高さ 2以下の根付き木の集合に対して極大な共通木は一意に定まり，
またその木は多項式時間で求められる．
• 高さ 2以下の根付き木に対する飽和頻出グラフは多項式遅延で列挙できる．

今後の展望
• 飽和頻出部分木マイニングが計算困難になる高さの境界

• 高さ 2以下の極大頻出部分木マイニングを行うアルゴリズム

• 高さ 60以上の木では計算困難であることが示されている [2]．
• 本研究で高さ2以下の木では多項式遅延アルゴリズムが存在することを示した．
→よって，境界となる高さ hは 3 ≤ h ≤ 60

[2] Kimelfeld and Kolaitis. (2013). The complexity of mining maximal frequent subgraphs. PODS 13.
https://doi.org/10.1145/2463664.2465222


