{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 演習問題\n", "\n", "[](https://colab.research.google.com/github/kentakom1213/practice-datavisualization/blob/main/matplotlib_practice.ipynb)\n", "\n", "演習問題です。\n" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "# 日本語対応\n", "from matplotlib import rcParams\n", "rcParams['font.family'] = 'sans-serif'\n", "rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio', 'Takao', 'IPAexGothic', 'IPAPGothic', 'VL PGothic', 'Noto Sans CJK JP']" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", "0 -114.31 34.19 15.0 5612.0 1283.0 \n", "1 -114.47 34.40 19.0 7650.0 1901.0 \n", "2 -114.56 33.69 17.0 720.0 174.0 \n", "3 -114.57 33.64 14.0 1501.0 337.0 \n", "4 -114.57 33.57 20.0 1454.0 326.0 \n", "\n", " population households median_income median_house_value \n", "0 1015.0 472.0 1.4936 66900.0 \n", "1 1129.0 463.0 1.8200 80100.0 \n", "2 333.0 117.0 1.6509 85700.0 \n", "3 515.0 226.0 3.1917 73400.0 \n", "4 624.0 262.0 1.9250 65500.0 \n" ] } ], "source": [ "df = pd.read_csv('sample_data/california_housing_train.csv')\n", "\n", "print(df.head(5))" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | month | \n", "average_temperature | \n", "precipitation_amount | \n", "
---|---|---|---|
0 | \n", "1 | \n", "10.7 | \n", "98.8 | \n", "
1 | \n", "2 | \n", "11.8 | \n", "100.2 | \n", "
2 | \n", "3 | \n", "13.0 | \n", "69.4 | \n", "
3 | \n", "4 | \n", "13.9 | \n", "35.2 | \n", "
4 | \n", "5 | \n", "15.4 | \n", "13.3 | \n", "
5 | \n", "6 | \n", "16.9 | \n", "3.8 | \n", "
6 | \n", "7 | \n", "17.7 | \n", "0.0 | \n", "
7 | \n", "8 | \n", "18.2 | \n", "1.0 | \n", "
8 | \n", "9 | \n", "18.2 | \n", "1.9 | \n", "
9 | \n", "10 | \n", "16.9 | \n", "20.0 | \n", "
10 | \n", "11 | \n", "13.4 | \n", "50.3 | \n", "
11 | \n", "12 | \n", "10.7 | \n", "105.9 | \n", "