1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! 点、直線等に関する基礎的な操作

use crate::geometry::vec2::Vec2;

/// 点(2次元平面)
pub type Point = Vec2<f64>;

/// 十分に小さい数
pub const EPS: f64 = 1e-8;

impl PartialEq for Point {
    fn eq(&self, other: &Self) -> bool {
        self.dist(*other) < EPS
    }
}

impl From<(f64, f64)> for Point {
    fn from(value: (f64, f64)) -> Self {
        Self(value.0, value.1)
    }
}

impl Point {
    /// 2点間のユークリッド距離を求める
    ///
    /// ```math
    /// \|\boldsymbol{a} - \boldsymbol{b}\| = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}
    /// ```
    pub fn dist(&self, other: Self) -> f64 {
        self.dist2(other).sqrt()
    }

    /// ノルムを求める
    ///
    /// ```math
    /// \|\boldsymbol{a}\| = \sqrt{a_x^2 + a_y^2}
    /// ```
    pub fn norm(&self) -> f64 {
        self.norm2().sqrt()
    }

    /// 同じ向きの単位ベクトルを求める
    pub fn unit(&self) -> Self {
        *self / self.norm()
    }

    /// 法線ベクトル
    /// (90度回転させたベクトル)
    /// を求める
    pub fn normal(&self) -> Self {
        let Self(x, y) = *self;
        Self(-y, x)
    }

    /// 原点周りに $`\theta`$ 回転させた点を求める
    pub fn rotate_o(&self, theta: f64) -> Self {
        let Self(x, y) = *self;
        Self(
            theta.cos() * x - theta.sin() * y,
            theta.sin() * x + theta.cos() * y,
        )
    }
}

/// 直線(2次元平面)
#[derive(Debug)]
pub struct Line(pub Point, pub Point);

impl Line {
    /// 射影
    /// (直線`l`に対して点`p`から引いた垂線の足)
    /// を求める
    pub fn projection(&self, p: Point) -> Point {
        let Self(a, b) = *self;
        let t = (p - a).dot(a - b) / (a - b).norm2();
        a + (a - b) * t
    }

    /// 反射
    /// (直線`l`に対して点`p`に対称な点)
    /// を求める
    pub fn reflection(&self, p: Point) -> Point {
        p + (self.projection(p) - p) * 2.0
    }

    /// 2直線の直交判定
    pub fn is_orthogonal(&self, other: &Self) -> bool {
        (self.1 - self.0).dot(other.1 - other.0).abs() < EPS
    }

    /// 2直線の平行判定
    pub fn is_parallel(&self, other: &Self) -> bool {
        (self.1 - self.0).cross(other.1 - other.0).abs() < EPS
    }

    /// 2直線の交点を求める
    ///
    /// **戻り値**
    /// - `Point` : 交点
    pub fn cross_point(&self, other: &Self) -> Point {
        let d1 = (self.1 - self.0).cross(other.1 - other.0);
        let d2 = (self.1 - self.0).cross(self.1 - other.0);

        if d1.abs() < EPS && d2.abs() < EPS {
            return other.0;
        }

        other.0 + (other.1 - other.0) * (d2 / d1)
    }

    /// 点`p`と直線の距離を求める
    pub fn dist_point(&self, p: Point) -> f64 {
        let Self(a, b) = *self;
        (b - a).cross(p - a).abs() / a.dist(b)
    }
}

/// 3点 O, A, B の位置関係
#[derive(Debug, PartialEq, Eq)]
pub enum Orientation {
    /// O, A, B が反時計回りになる場合
    ///
    /// > ```text
    /// >  B   A
    /// >  ↑ ➚
    /// >  O
    /// > ```
    CounterClockwise,
    /// O, A, B が時計回りになる場合
    ///
    /// > ```text
    /// >  A   B
    /// >  ↑ ➚
    /// >  O
    /// > ```
    Clockwise,
    /// B, O, A がこの順で同一直線上にある場合
    ///
    /// > ```text
    /// > B ← O → A
    /// > ```
    OnlineBack,
    /// O, A, B がこの順で同一直線上にある場合
    ///
    /// > ```text
    /// > O → A → B
    /// > ```
    OnlineFront,
    /// B が線分 OA 上にある場合
    ///
    /// > ```text
    /// > O → B → A
    /// > ```
    OnSegment,
}

impl Orientation {
    /// 3点 O, A, B の位置関係を調べる
    pub fn calc(O: Point, mut A: Point, mut B: Point) -> Self {
        A = A - O;
        B = B - O;

        if A.cross(B) > EPS {
            return Orientation::CounterClockwise;
        }

        if A.cross(B) < -EPS {
            return Orientation::Clockwise;
        }

        if A.dot(B) < 0.0 {
            return Orientation::OnlineBack;
        }

        if A.norm2() < B.norm2() {
            return Orientation::OnlineFront;
        }

        Orientation::OnSegment
    }

    /// 値を取得する
    pub fn val(&self) -> f64 {
        match self {
            Orientation::CounterClockwise => 1.0,
            Orientation::Clockwise => -1.0,
            Orientation::OnlineBack => 2.0,
            Orientation::OnlineFront => -2.0,
            Orientation::OnSegment => 0.0,
        }
    }
}

/// 線分(2次元平面)
#[derive(Debug, Clone, Copy)]
pub struct Segment(pub Point, pub Point);

impl Segment {
    /// 2つの線分が衝突しているかどうかを判定する
    pub fn has_intersection(&self, other: &Self) -> bool {
        (Orientation::calc(self.0, self.1, other.0).val()
            * Orientation::calc(self.0, self.1, other.1).val())
            <= 0.0
            && (Orientation::calc(other.0, other.1, self.0).val()
                * Orientation::calc(other.0, other.1, self.1).val())
                <= 0.0
    }

    /// 2つの線分の交点を求める
    ///
    /// **戻り値**
    /// - 2つの線分が点`x`で交わるとき → Some(`x`)
    /// - 2つの線分が交点を持たないとき → None
    pub fn cross_point(&self, other: &Self) -> Option<Point> {
        self.has_intersection(other).then(|| {
            let l1 = self.to_line();
            let l2 = other.to_line();
            l1.cross_point(&l2)
        })
    }

    /// 点`p`と線分の距離を求める
    pub fn dist_point(&self, p: Point) -> f64 {
        let Self(a, b) = *self;

        if (b - a).dot(p - a) < EPS {
            return p.dist(a);
        }

        if (a - b).dot(p - b) < EPS {
            return p.dist(b);
        }

        self.to_line().dist_point(p)
    }

    /// 線分同士の距離を求める
    pub fn dist_segment(&self, other: &Self) -> f64 {
        if self.has_intersection(other) {
            return 0.0;
        }

        let mut res = f64::MAX;

        for d in [
            self.dist_point(other.0),
            self.dist_point(other.1),
            other.dist_point(self.0),
            other.dist_point(self.1),
        ] {
            if res > d {
                res = d;
            }
        }

        res
    }

    /// 直線に変換する
    pub fn to_line(&self) -> Line {
        let Self(a, b) = *self;
        Line(a, b)
    }
}